
Primitive recursive arithmetic in Lestrade

Randall Holmes

starting out, 4/5/2019

In this file, I am going to implement PRA and discuss why I am really
just implementing PRA. There is a background question of just how strong
the Lestrade background logic is; my reply in principle is “vanishingly weak”,
but I have to justify that.

Lestrade execution:

construct Nat type

>> Nat: type {move 0}

% the type of natural numbers

declare m in Nat

>> m: in Nat {move 1}

declare n in Nat

>> n: in Nat {move 1}

construct = m n prop

>> =: [(m_1:in Nat),(n_1:in Nat) => (---:prop)]

1



>> {move 0}

construct 0 in Nat

>> 0: in Nat {move 0}

Above find the natural number type with its primitive constant 0 and the
equality relation, the only constructor for atomic propositions. The successor
operation is introduced as a primitive recursive function constructor below.

Lestrade execution:

% basic propositional logic

declare p prop

>> p: prop {move 1}

declare q prop

>> q: prop {move 1}

construct & p q prop

>> &: [(p_1:prop),(q_1:prop) => (---:prop)]

>> {move 0}

construct ~ p prop

>> ~: [(p_1:prop) => (---:prop)]

>> {move 0}

2



declare pp that p

>> pp: that p {move 1}

declare qq that q

>> qq: that q {move 1}

declare rr that p & q

>> rr: that (p & q) {move 1}

construct Conj pp qq that p & q

>> Conj: [(.p_1:prop),(pp_1:that .p_1),(.q_1:

>> prop),(qq_1:that .q_1) => (---:that

>> (.p_1 & .q_1))]

>> {move 0}

construct Simp1 rr that p

>> Simp1: [(.p_1:prop),(.q_1:prop),(rr_1:that

>> (.p_1 & .q_1)) => (---:that .p_1)]

>> {move 0}

construct Simp2 rr that q

>> Simp2: [(.p_1:prop),(.q_1:prop),(rr_1:that

>> (.p_1 & .q_1)) => (---:that .q_1)]

>> {move 0}

3



declare negp that ~ p

>> negp: that ~(p) {move 1}

declare q2 prop

>> q2: prop {move 1}

construct Contra negp q2 that q2

>> Contra: [(.p_1:prop),(negp_1:that ~(.p_1)),

>> (q2_1:prop) => (---:that q2_1)]

>> {move 0}

declare proveall [pp => that q]

>> proveall: [(pp_1:that p) => (---:that q)]

>> {move 1}

construct Negintro proveall that ~ p

>> Negintro: [(.p_1:prop),(.q_1:prop),(proveall_1:

>> [(pp_2:that .p_1) => (---:that .q_1)])

>> => (---:that ~(.p_1))]

>> {move 0}

declare maybe that ~ ~ p

>> maybe: that ~(~(p)) {move 1}

construct Dneg maybe that p

4



>> Dneg: [(.p_1:prop),(maybe_1:that ~(~(.p_1)))

>> => (---:that .p_1)]

>> {move 0}

Above find primitives of propositional logic based on conjunction and
negation. The logic is classical. Is there any actual difference between con-
structive and classical PRA? Note that equality, conjunction and negation
are the only proposition constructors.

Lestrade execution:

% properties of equality

construct Refleq m that m=m

>> Refleq: [(m_1:in Nat) => (---:that (m_1 =

>> m_1))]

>> {move 0}

declare pred [m => prop]

>> pred: [(m_1:in Nat) => (---:prop)]

>> {move 1}

declare misn that m=n

>> misn: that (m = n) {move 1}

declare predm that pred m

>> predm: that pred(m) {move 1}

5



construct Subs pred, misn predm that pred n

>> Subs: [(pred_1:[(m_2:in Nat) => (---:prop)]),

>> (.m_1:in Nat),(.n_1:in Nat),(misn_1:

>> that (.m_1 = .n_1)),(predm_1:that pred_1(.m_1))

>> => (---:that pred_1(.n_1))]

>> {move 0}

Here we have the usual primitive constructions for the logic of equality.

Lestrade execution:

% functions

construct function type

>> function: type {move 0}

construct operation type

>> operation: type {move 0}

declare f in function

>> f: in function {move 1}

declare g in function

>> g: in function {move 1}

declare o in operation

6



>> o: in operation {move 1}

declare m2 in Nat

>> m2: in Nat {move 1}

declare n2 in Nat

>> n2: in Nat {move 1}

% we support only unary and binary functions. This should be enough.

% to justify use of unary and binary functions, we need enough to bootstrap

% implementation of the pair.

construct App1 f m2 in Nat

>> App1: [(f_1:in function),(m2_1:in Nat) =>

>> (---:in Nat)]

>> {move 0}

construct App2 o m2 n2 in Nat

>> App2: [(o_1:in operation),(m2_1:in Nat),(n2_1:

>> in Nat) => (---:in Nat)]

>> {move 0}

construct Iter1 f n2 in function

>> Iter1: [(f_1:in function),(n2_1:in Nat) =>

>> (---:in function)]

>> {move 0}

7



% an internal successor function and a defined Lestrade successor function

construct S0 in function

>> S0: in function {move 0}

define S n2 : App1 S0 n2

>> S: [(n2_1:in Nat) => ((S0 App1 n2_1):in Nat)]

>> {move 0}

We introduce a type of functions (primitive recursive functions of one
argument) and operations (primitive recursive functions of two arguments).
We cannot handle functions of arbitrary arity unless we introduce an argu-
ment list type, and we should be able to show that this is the same as the
usual logic by defining a pair and its projections. We provide the operations
for applying a function to a single argument and an operation to two argu-
ments, and we provide the successor function, as a function in the internal
sense and as a defined Lestrade function.

Lestrade execution:

% constructors for unary functions: iteration and composition.

% that iteration is enough requires proof, again, using pairs.

declare x in Nat

>> x: in Nat {move 1}

construct Iteraxiom11 f n2 that App1(Iter1 f n2,0) = n2

8



>> Iteraxiom11: [(f_1:in function),(n2_1:in

>> Nat) => (---:that (((f_1 Iter1 n2_1)

>> App1 0) = n2_1))]

>> {move 0}

construct Iteraxiom12 f n2 x that App1(Iter1 f n2,S x) = App1(f,App1(Iter1 f n2,x))

>> Iteraxiom12: [(f_1:in function),(n2_1:in

>> Nat),(x_1:in Nat) => (---:that (((f_1

>> Iter1 n2_1) App1 S(x_1)) = (f_1 App1

>> ((f_1 Iter1 n2_1) App1 x_1))))]

>> {move 0}

construct Comp1 f g in function

>> Comp1: [(f_1:in function),(g_1:in function)

>> => (---:in function)]

>> {move 0}

construct Compaxiom1 f g x that App1(Comp1 f g,x) = App1(f,App1 g x)

>> Compaxiom1: [(f_1:in function),(g_1:in function),

>> (x_1:in Nat) => (---:that (((f_1 Comp1

>> g_1) App1 x_1) = (f_1 App1 (g_1 App1

>> x_1))))]

>> {move 0}

We provide the basic operations on unary functions. We use iteration
instead of recursion, which again requires a justification by constructing a
pair and its projections. The iteration constructor is provided (taking a
function f and a number a to the function (n 7→ fn(a))) and the basic
axioms for the iterator are provided. Composition of unary functions and its
basic axiom are provided.

Lestrade execution:

9



% iteration for operations

% again, work on pairs will be needed to show that this is adequate

clearcurrent

declare o in operation

>> o: in operation {move 1}

declare g in function

>> g: in function {move 1}

declare m in Nat

>> m: in Nat {move 1}

declare n in Nat

>> n: in Nat {move 1}

construct Iter2 o g in operation

>> Iter2: [(o_1:in operation),(g_1:in function)

>> => (---:in operation)]

>> {move 0}

construct Iteraxiom21 o g m that App2 (Iter2 o g,m,0) = App1(g,m)

>> Iteraxiom21: [(o_1:in operation),(g_1:in

10



>> function),(m_1:in Nat) => (---:that

>> (App2((o_1 Iter2 g_1),m_1,0) = (g_1

>> App1 m_1)))]

>> {move 0}

construct Iteraxiom2 o g m n that App2(Iter2 o g,m,S n) = App2(o,m,App2(Iter2 o g,m,n))

>> Iteraxiom2: [(o_1:in operation),(g_1:in function),

>> (m_1:in Nat),(n_1:in Nat) => (---:that

>> (App2((o_1 Iter2 g_1),m_1,S(n_1)) =

>> App2(o_1,m_1,App2((o_1 Iter2 g_1),m_1,

>> n_1))))]

>> {move 0}

We provide the iteration operator on operations, taking an operation ◦
and a function g to (mn 7→ (p 7→ m ◦ p)n(g(m)).

Lestrade execution:

% compose operations

% unary operations can be padded with an additional argument on either side to become binary using

% the binary iteration construct, so there is no need of compositions with unary inputs or outputs here.

clearcurrent

declare o in operation

>> o: in operation {move 1}

declare o1 in operation

>> o1: in operation {move 1}

11



declare o2 in operation

>> o2: in operation {move 1}

declare m in Nat

>> m: in Nat {move 1}

declare n in Nat

>> n: in Nat {move 1}

construct Comp2 o o1 o2 in operation

>> Comp2: [(o_1:in operation),(o1_1:in operation),

>> (o2_1:in operation) => (---:in operation)]

>> {move 0}

construct Compaxiom2 o o1 o2 m n that App2(Comp2 o o1 o2,m,n) = App2(o,App2 o1 m n,App2 o2 m n)

>> Compaxiom2: [(o_1:in operation),(o1_1:in

>> operation),(o2_1:in operation),(m_1:

>> in Nat),(n_1:in Nat) => (---:that (App2(Comp2(o_1,

>> o1_1,o2_1),m_1,n_1) = App2(o_1,App2(o1_1,

>> m_1,n_1),App2(o2_1,m_1,n_1))))]

>> {move 0}

% reduction of arity; I think this is needed (and sufficient).

construct Diag o in function

12



>> Diag: [(o_1:in operation) => (---:in function)]

>> {move 0}

construct Diagaxiom o n that App1(Diag o,n) = App2(o,n,n)

>> Diagaxiom: [(o_1:in operation),(n_1:in Nat)

>> => (---:that ((Diag(o_1) App1 n_1) =

>> App2(o_1,n_1,n_1)))]

>> {move 0}

% now for the induction axiom

clearcurrent

declare p prop

>> p: prop {move 1}

declare q prop

>> q: prop {move 1}

define -> p q:~(p & ~q)

>> ->: [(p_1:prop),(q_1:prop) => (~((p_1 & ~(q_1))):

>> prop)]

>> {move 0}

declare m in Nat

>> m: in Nat {move 1}

13



declare pred [m=>prop]

>> pred: [(m_1:in Nat) => (---:prop)]

>> {move 1}

declare basis that pred 0

>> basis: that pred(0) {move 1}

declare ind [m => that (pred m) -> pred(S m)]

>> ind: [(m_1:in Nat) => (---:that (pred(m_1)

>> -> pred(S(m_1))))]

>> {move 1}

declare n in Nat

>> n: in Nat {move 1}

construct Induction pred, basis, ind, n that pred n

>> Induction: [(pred_1:[(m_2:in Nat) => (---:

>> prop)]),

>> (basis_1:that pred_1(0)),(ind_1:[(m_3:

>> in Nat) => (---:that (pred_1(m_3)

>> -> pred_1(S(m_3))))]),

>> (n_1:in Nat) => (---:that pred_1(n_1))]

>> {move 0}

I believe that what I have presented here is a complete axiomatization of
PRA. It takes a little work to verify this, because my primitives are stripped
down. A pairing operation and its projections must be implementable for

14



everything to work correctly; they should be. These are needed because I
must bound arity in Lestrade, and also because I choose to use iteration
rather than recursion for both functions and operations.

15


